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Dynamics of two-component vector dark solitons are investigated by the variational approach in the de-
focusing nonlinear media, and effects of the weak nonlocality on the soliton propagation and interaction
are analyzed. The nonlocality degree determines the intensity distribution of the dark solitons in the
stationary states, enhances the intensity transfer between two vector solitons, and affects the propagation
and interaction. The numerical results confirm the theoretical findings.
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A spatial optical soliton is a beam which propagates in
a nonlinear medium without changing its structure, and
exists as a robust object withstanding even strong per-
turbations. Nonlocality plays an important role in many
areas of nonlinear physics, acts to spread out the effects
of localized excitations, and can suppress modulation in-
stabilities of homogeneous states[1,2]. The weak nonlocal
nonlinear media can support solitons, and solitons have
been typically considered in the context of so-called lo-
cal nonlinear media, where the refractive index change
induced by an optical beam in a particular point de-
pends solely on the beam intensity[3,4]. Depending on the
type of nonlinearity, nonlinear media may support either
bright or dark solitons, and dark solitons are more com-
plex objects, as they represent an intensity dip in an oth-
erwise constant background with nontrivial phase profile.
Spatial dark solitons have been observed and studied in
media with a negative or self-defocusing nonlinearity[5,6].
In this letter, the effects of the weak nonlocality is inves-
tigated on the propagation and interaction of the two-
component vector dark solitons in self-defocusing nonlin-
ear media, and some novel results are obtained.

Two mutually incoherent wave-packets are considered
propagating along the z axis within the defocusing media,
and the governing equations of the vectorial Manakov
system which consists of two vector components can be
described by
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where u1 and u2 are normalized vector components, re-
spectively; z and x are the distance and transverse co-

ordinate, respectively; I(x) = |u1|
2
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2
is the total

intensity; R(x) is the nonlocal response function, and
R(x) = δ(x) in a local Kerr medium. The actual form
of the nonlocal response is determined by the details
of the physical process responsible for the nonlocality,
and the response function may be Gaussian-shaped re-
sponse and exponential-decay response, such as R(x) =

(2σ)−1 exp(−|x|/σ) originating from a Lorentzian in the
Fourier domain. It is well known that the nonlinear con-
tribution to refractive index n(x) can be given by
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where ρ(> 0) is the nonlocality degree, which governs the
diffusion strength of the refractive index in the nonlocal
nonlinear media. The weak nonlocality can be calculated
through following expansion of the nonlinear refractive
index
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Substituting Eq. (3) into Eq. (1) leads to the following
equations:
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The effects of the weak nonlocality on the vector dark
solitons can be investigated by variation approach based
on the renormalized integrals of motion. To adopt La-
grangian variational approach, the dark soliton wave-
function ui(i = 1, 2) is rescaled ui(i=1, 2) → ui exp(2jz)
to remove the background wave, and the renormalized
equations can be expressed as
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We adopt trial dark soliton wave-functions below as the
solutions to Eq. (4)
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where ∆(z) is the spatial interval between two vector soli-
tons; θ(z) is the distributing angle; cos θ is the effective
soliton speed; sin θ is the dark soliton depth. These pa-
rameters above are the functions of the distance z.

We can obtain the averaged Lagrangian by Eqs. (4),
(5), and (6) based on the renormalized integrals of mo-
tion, and
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The motion equations for the distributing angle and the
interval are obtained from the averaged Lagrangian by
using dL(z)/dσ − d[dL(z)/d(dσ/dz)]/dz = 0 (σ = θ, ∆)
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From the motion Eq. (8), we can see the motion equa-
tion of the interval is d∆

dz = 2 cos θ for ∆ → 0 when
there are no the interaction and the nonlocality (ρ = 0).
The special case coincides with the general vector dark
solitons under the framework of Eq. (4) without the per-
turbations (the nonlocality and the interaction)[7]. The
distance coordinate derivative for the interval is modu-
lated by the nonlocality and the interaction.

By setting the distance coordinate derivatives in Eq.
(8) to zero, and the stationary states are

θs1 =
π

2
and ∆s1 = 0, (9)

θs2 = arctg
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)1/2

and ∆s2 = 0. (10)

Equation (9) corresponds to u1(z, x) = tanh(x) and
u2(z, x) = − tanh(x), namely there are two black solitons
of inverse phase and the same maximum depth. The fea-
ture shows that the stationary state may be two states
when two solitons are black solitons[7].

Equation (10) corresponds to u1 = j cos θs2 + sin θs2

tanh(sin θs2τ) and u2 = j cos θs2 − sin θs2 tanh(sin θs2τ),
and this situation shows the vector soliton has the other
stationary states, whose intensity distribution relates to
the nonlocality degree. The feature shows the existence
of stable dark soliton solutions for the weak nonlocality,
and Eq. (10) becomes Eq. (9) for the nonlocality degree
of ρ → 0. The depth for the dark solitons become shallow
as the nonlocality degree becomes large in the stationary
state. The very shallow dark solitons easily change their
structure while propagating in the nonlinear media, and
are easily submerged into the background wave.

Equation (10) is stable against perturbations by per-
forming a standard linear stability analysis[8,9] based on
Eqs. (8) and (10). Figure 1 is the intensity of the vector
dark soliton in Eq. (10) versus the transverse coordi-
nate x for the different nonlocality degrees of ρ = 0.05,
0.10, and 0.20, we can see that the soliton intensity dis-
tribution of the stationary state depends on the nonlo-
cality, and the depth for the dark solitons in the sta-
tionary state becomes shallow as the nonlocality degree
becomes large. It is known that larger values of the depth
for the dark solitons are physically more interesting be-
cause the very deep dark solitons are easily distinguish-
able from the background wave, and hardly submerged
by the background wave in their propagation and inter-
action. The intensity transfer between two vector soli-
tons easily occurs for the dark solitons with small values
of the depth. The features show that the nonlocality
may affect propagation stability of the shallow dark soli-
tons in their propagation and interaction, and enhance
the intensity transfer between two-component vector soli-
tons.

Equation (8) reduce to the very simple form by lineariz-
ing the motion equations in ∆ only around the second
stationary state of θs2 = arctg( 3

4ρ )1/2, and
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This suggests a mechanical analogy in which the dark
solitons as particles of the spatial coordinate (interval)
∆ move in the effective potential. Figure 2 shows the
effective potential versus the interval for the different
nonlocality degrees of ρ = 0.05, 0.10, and 0.20, we see
that the effective potentials Veff(∆) are parabolic curves
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with the bottom ∆ = 0, where the particles can oscillate
periodically around ∆ = 0. The depth of the effective
potential depends on the nonlocality degree, and the po-
tential is shallow as the nonlocality degree is large. In
the case, the particles oscillate in very large range around
∆ = 0, and the nonlocality enhances the fluctuation of
the interval, and the particles become instable because
of the margin decrease of the effective potential when
the nonlocality degree becomes large. The feature means
that the vector dark solitons become instability in the
presence of the weak nonlocality. In nature, the nonlocal
nonlinearity may affect the vector dark solitons against
the modulational instability due to reduction of the ef-
fective nonlinearity, and enhance the intensity transfer
between two vector solitons which may be explained by
the effective potential.

We can perform a series of direct numerical simulations
for the nonlinear Schrödinger equations (4) to discuss the
effects of the weak nonlocality on the propagation and
the interaction of the two dark solitons in the nonlocal
nonlinear media. Figure 3 is the normalized soliton in-
tensity versus the propagation distance with the initial
interval ∆(z = 0) = 0. The incident dark soliton pulses
are u1(x, z = 0) = tanh(x) and u2(x, z = 0) = − tanh(x),
where the initial distributing angle is θ(z = 0) = π/2.
We can see that the nonlocality plays an important role
in the evolution of each dark soliton and interaction be-
tween the two vector dark solitons. For example, the
nonlocality reduces the stability of the dark soliton if the
nonlocality is large enough, and enhances the interaction.
The intensity can be transferred from one soliton to the
other at the domain wall if the dark solitons are shal-
low. Meantime the effective soliton speed (cos θ) is large

Fig. 1. Intensity of dark solitons in Eq. (10) versus the trans-
verse coordinate for the different nonlocality degrees.

Fig. 2. Effective potential versus the interval for the different
nonlocality degrees.

Fig. 3. Normalized dark soliton intensity versus the propaga-
tion distance for different nonlocality degrees. (a) ρ = 0.05;
(b) ρ = 0.10; (c) ρ = 0.20.

and the soliton depth (sin θ) is small, and its stability
is reduced. The effecting reason is that the nonlocality
enhances the fluctuation of the interval, which fluctuates
the linear wave with large amplitude. Subsequently the
fluctuated linear wave correlates the two dark solitons by
their sideband, then enhances their interaction and re-
duces the stability of the vector dark solitons.

In conclusion, the dynamics of the two-component vec-
tor dark solitons are investigated by the variational ap-
proach in nonlocal nonlinear media, and effects of the
weak nonlocality on the soliton propagation and interac-
tion between the two vector dark solitons are discussed.
The effective potential is obtained by performing a linear
analysis, and the mechanical analogy is discussed that
the dark solitons as the particles of the spatial coor-
dinate (interval) move in the effective potential. The
nonlocality affects the propagation stability of the two-
component vector dark solitons if the nonlocality degree
is large enough, and enhances the interaction. Finally,
the dynamics of the two-component vector dark solitons
are investigated by the numerical simulations, and the
numerical results confirm these theoretical findings.

This work was supported by the Scientific and Tech-
nological Research Program of Education Department
of Hubei Province (No. Z2007220010) and the Nat-
ural Scientific Foundation of Hubei Province (No.
2012FFB01001).

References
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